As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper addresses the task of answering consumer health questions about medications. To better understand the challenge and needs in terms of methods and resources, we first introduce a gold standard corpus for Medication Question Answering created using real consumer questions. The gold standard (https://github.com/abachaa/Medication_QA_MedInfo2019) consists of six hundred and seventy-four question-answer pairs with annotations of the question focus and type and the answer source. We first present the manual annotation and answering process. In the second part of this paper, we test the performance of recurrent and convolutional neural networks in question type identification and focus recognition. Finally, we discuss the research insights from both the dataset creation process and our experiments. This study provides new resources and experiments on answering consumers’ medication questions and discusses the limitations and directions for future research efforts.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.