As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Earthquake science is in the midst of a revolution. Our understanding of tectonic faulting has been shaken to the core by the discovery of seismic tremor, low frequency earthquakes, slow slip events, and other modes of fault slip. These phenomena represent modes of failure that were thought to be non-existent and theoretically impossible only a few years ago. Despite the growing number of observations of slow earthquakes and the fact that they can trigger catastrophic large earthquakes their origin remains unresolved. Basic questions remain regarding how slow ruptures can propagate quasi-dynamically, at speeds far below the Rayleigh wave speed, and how tectonic faults can host both slow slip and dynamic earthquake rupture. Here, I summarize results from laboratory experiments showing repetitive slow slip, describe friction laws for slow earthquakes, and discuss implications of the work for earthquake scaling laws. The lab results suggest that slow earthquakes occur for conditions near the stability boundary defined by the critical fault rheologic weakening rate Kc and that the spectrum of fault slip behaviors can be described with a single frictional mechanism. Other processes may contribute to the origin of slow earthquakes but the work summarized here shows that slow and quasi-dynamic fault slip can occur entirely as a result of frictional processes and fault zone heterogeneity.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.