As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Background: Crowding in emergency departments (ED) has a negative impact on quality of care and can be averted by allocating additional resources based on predictive crowding models. However, there is a lack in effective external overall predictors, particularly those representing public activity.
Objectives: This study, therefore, examines public activity measured by regional road traffic flow as an external predictor of ED crowding in an urban hospital.
Methods: Seasonal autoregressive cross-validated models (SARIMA) were compared with respect to their forecasting error on ED crowding data.
Results: It could be shown that inclusion of inflowing road traffic into a SARIMA model effectively improved prediction errors.
Conclusion: The results provide evidence that circadian patterns of medical emergencies are connected to human activity levels in the region and could be captured by public monitoring of traffic flow. In order to corroborate this model, data from further years and additional regions need to be considered. It would also be interesting to study public activity by additional variables.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.