As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper describes the use of sensors in intelligent tutors to detect students' affective states and to embed emotional support. Using four sensors in two classroom experiments the tutor dynamically collected data streams of physiological activity and students' self-reports of emotions. Evidence indicates that state-based fluctuating student emotions are related to larger, longer-term affective variables such as self-concept in mathematics. Students produced self-reports of emotions and models were created to automatically infer these emotions from physiological data from the sensors. Summaries of student physiological activity, in particular data streams from facial detection software, helped to predict more than 60% of the variance of students emotional states, which is much better than predicting emotions from other contextual variables from the tutor, when these sensors are absent. This research also provides evidence that by modifying the “context” of the tutoring system we may well be able to optimize students' emotion reports and in turn improve math attitudes.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.