As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Mass is conventionally introduced into physical theories as a passive parameter, m0. As such, it plays no dynamical role in the theory, nor can it change. But in practice, particles decay and recombine, changing their mass. They also acquire binding energies, changing their mass, and may also have an energy uncertainty, and so also a mass uncertainty. Similarly, the proper time of a particle is described along its trajectory. But quantum mechanically, trajectories can be split and recombined, or they may not be well-defined at all. So the proper time also has a dynamical role to play. We also show that there is a natural extension to the equivalence principle that is needed to include unstable particles. Both proper time and mass should be treated as quantum-mechanical operators, whose values are determined by measurement. The Hamiltonian formalism has a natural extension to include them as an extra coordinate and conjugate momentum, allowing one to construct both a classical and quantum theory of particles that can decay, have binding energies and obey the uncertainty principle.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.