As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Unplanned hospital readmissions are a burden to the healthcare system and to the patients. To lower the readmission rates, machine learning approaches can be used to create predictive models, with the intention to provide actionable information for caregivers. According to the German Diagnosis Related Groups (G-DRG) system, for every stay in a German hospital, data are collected for the subsequent reimbursement calculations. After statistical evaluation, these data are summarised in the yearly updated Case Fee Catalogue, which not only contains the weights for the reimbursement calculations, but also the expected length of stay values. The aim of the present paper was to evaluate potential enhancements of the prediction accuracy of our 30-day readmission prediction model by utilising additional information from the Case Fee Catalogue. A bagged ensemble of 25 regression trees was applied to ยง21 datasets from five independent German hospitals from 2013 to 2017, resulting in 422,597 cases. The overall model showed an area under the receiver operating characteristics curve of 0.812. Three of the top five features ranked by out of bag feature importance emerged from the Case Fee Catalogue. We conclude, that additional information from the Case Fee Catalogue can enhance the accuracy of 30-day readmission prediction.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.