As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Systematic reviews are widely used as a tool for decision making to establish new clinical guidelines. Reviews can be time-consuming, potentially leaving authors with thousands of citations to screen. Software tools for assisting reviewers in this process are available, however, only few use text mining techniques to reduce screening time. In this work, we introduce Twister, a web-based tool for semi-automated literature reviews with broad research questions. We discuss how two text mining techniques can be used to (a) extract data elements from clinical abstracts and (b) how citations can be clustered based on a key phrase-extraction to help reviewers reduce screening time. We present the overall system architecture, design consideration and system implementation.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.