

One of the ways of reducing the effects of Climate Change is to rely on renewable energy sources. Their intermittent nature makes necessary to obtain a mid-long term accurate forecasting. Wind Energy prediction is based on the ability to forecast wind speed. This has been a problem approached using different methods based on the statistical properties of the wind time series.
Wind Time series are non-linear and non-stationary, making their forecasting very challenging. Deep neural networks have shown their success recently for problems involving sequences with non-linear behavior. In this work, we perform experiments comparing the capability of different neural network architectures for multi-step forecasting obtaining a 12 hours ahead prediction using data from the National Renewable Energy Laboratory's WIND dataset
We thank the US National Renewable Energy Laboratory (NREL) for the use of their wind energy datasets.
This preliminary work
This work is partially supported by the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement, by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2014-SGR-1051).