As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Pseudo-Boolean and cardinality constraints are a natural generalization of clauses. While a clause expresses that at least one literal must be true, a cardinality constraint expresses that at least n literals must be true and a pseudo-Boolean constraint states that a weighted sum of literals must be greater than a constant. These contraints have a high expressive power, have been intensively studied in 0/1 programming and are close enough to the satisfiability problem to benefit from the recents advances in this field. Besides, optimization problems are naturally expressed in the pseudo-Boolean context.
This chapter presents the inference rules on pseudo-Boolean constraints and demonstrates their increased inference power in comparison with resolution. It also shows how the modern satisfiability algorithms can be extended to deal with pseudo-Boolean constraints.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.