As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Symmetry is at once a familiar concept (we recognize it when we see it!) and a profoundly deep mathematical subject. At its most basic, a symmetry is some transformation of an object that leaves the object (or some aspect of the object) unchanged. For example, a square can be transformed in eight different ways that leave it looking exactly the same: the identity “do-nothing” transformation, 3 rotations, and 4 mirror images (or reflections). In the context of decision problems, the presence of symmetries in a problem's search space can frustrate the hunt for a solution by forcing a search algorithm to fruitlessly explore symmetric subspaces that do not contain solutions. Recognizing that such symmetries exist, we can direct a search algorithm to look for solutions only in non-symmetric parts of the search space. In many cases, this can lead to significant pruning of the search space and yield solutions to problems which are otherwise intractable.
This chapter explores the symmetries of Boolean functions, particularly the symmetries of their conjunctive normal form (CNF) representations. Specifically, it examines what those symmetries are, how to model them using the mathematical language of group theory, how to derive them from a CNF formula, and how to utilize them to speed up CNF SAT solvers.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.