As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Genetic Programmings (GPs) is one of the most powerful evolutionary computation (EC) for software evolution. In ECs, it is difficult to maintain efficient building blocks. In particular, the control of building blocks in the population of genetic programming (GP) is relatively difficult because of tree-shaped individuals and also because of bloat, which is the uncontrolled growth of ineffective code segments in GP. For a variety of reasons, reliable techniques to remove bloat are highly desirable. This paper introduces a novel approach of removing bloat, by proposing a novel GP called “Genetic Programming with Multi-Layered Population Structure (MLPS-GP)” that employs multi-layered population and searches solutions using local search and crossover. The MLPS-GP has no mutation-like operator because such kinds of operators are the source of bloats. We showed that diversity can be maintained well only controlling the tree structures by a well-structured multi-layered population. To confirm the effectiveness of the proposed method, the computational experiments were carried out taking several classical Boolean problems as examples.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.