As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The computation of a number of the smallest eigenvalues of large and sparse matrices is crucial in various scientific applications, as the Finite Element solution of PDEs, electronic structure calculations or Laplacian of graphs, to mention a few. We propose in this contribution a parallel algorithm which is based on the spectral low-rank modification of a factorized sparse inverse preconditioner (RFSAI) to accelerate Newton-based iterative eigensolvers. Numerical results onto matrices arising from various realistic problems with size up to 5 million unknowns and 2.2×108 nonzero elements account for the efficiency and the scalability of the proposed RFSAI–updated preconditioner.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.