As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Three different INTEL based HPC systems are used to benchmark an application of the LifeV library for running simulations of patient-specific cardiovascular hemodynamics. The targeted INTEL architectures rely on the Hashwell-Broadwell family of processors. Running times and scalability measures are collected with two real-size experiments. A third small-size test case is used to profile the code, exposing the effect of compiler vectorization, MPI efficiency and memory footprint. Profiling showed an unexpected low degree of floating point functional units usage, and a low percentage of effective vectorization. Extensive code redesign is likely necessary to best exploit the architectural features available in INTEL Knight Landing processors.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.