As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents an alum dosage prediction in coagulation process by using Weka Data Mining Software. The data in this research had been collected from Dongmarkkaiy Water Treatment Plant (DWTP), Vientiane capital, Laos PDR from 1st January 2008 to 31st October 2016. The total number of collected data were 2,891 records. In this research, we compared the results from multilayer perceptron (MLP), M5Rules, M5P, and REPTree method by using the root mean square error (RMSE) and mean absolute error (MAE) value. Three input independent variables, i.e. turbidity, pH, and alkalinity were used. The dependent variable was alum added for the coagulation process. Our experimental results indicated that the MLP method yielded the highest precision method in order to predict the alum dosage.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.