As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Vector Space Models (VSMs) represent documents as points in a vector space derived from term frequencies in the corpus. This level of abstraction provides a flexible way to represent complex semantic concepts through vectors, matrices, and higher-order tensors. In this paper we utilize a number of VSMs on a corpus of judicial decisions in order to classify cases in terms of legal factors, stereotypical fact patterns that tend to strengthen or weaken a side's argument in a legal claim. We apply different VSMs to a corpus of trade secret misappropriation cases and compare their classification results. The experiment shows that simple binary VSMs work better than previously reported techniques but that more complex VSMs including dimensionality reduction techniques do not improve performance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.