As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper describes an extended machine learning approach to classify legal norms in German statutory texts. We implemented an active machine learning (AML) framework based on open-source software. Within the paper we discuss different query strategies to optimize the selection of instances during the learning phase to decrease the required training data.
The approach was evaluated within the domain of tenancy law. Thereby, we manually labeled the 532 sentences into eight different functional types and achieved an average F1 score of 0.74. Comparing three different classifiers and four query strategies the classification performance F1 varies from 0.60 to 0.93. We could show that in norm classification tasks AML is more efficient than conventional supervised machine learning approaches.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.