As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Hand gestures and Deep Learning Strategies can be used to control a virtual robotic arm for real-time applications. A robotic arm which is portable to carry various places and which can be easily programmed to do any work of a hand and is controlled by using deep learning techniques. Deep hand is a combination of both virtual reality and deep learning techniques. It estimated the active spatio-temporal feature and the corresponding pose parameter for various hand movements, to determine the unknown pose parameter of hand gestures by using various deep learning algorithms. A novel framework for hand gestures has been made to estimate by using a deep convolution neural network (CNN) and a deep belief network (DBN). A comparison in terms of accuracy and recognition rate has been drawn. This helps in analyzing the movement of a hand and its fingers which can be made to control a robotic arm with high recognition rate and less error rate.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.