As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Today, about 55 per cent of the world's population lives in urban areas, a proportion that is expected to increase to 66 per cent by 2050. Such a steadily increasing urbanization is already bringing huge social, economic and environmental transformations and, at the same time, poses big challenges in city management issues, like resource planning (water, electricity), traffic, air and water quality, public policy and public safety services. To face such challenges, the exploitation of information coming from urban environments and the development of Smart City applications to enhance quality, improve performance and safety of urban services, are key elements. This chapter discusses how the analysis of urban data may be exploited for forecasting crimes and presents an approach, based on seasonal auto-regressive models, for reliably forecasting crime trends in urban areas. In particular, the main goal of this work is to discuss the impact of data mining on urban crime analysis and design a predictive model to forecast the number of crimes that will happen in rolling time horizons. As a case study, we present the analysis performed on an area of Chicago. Experimental evaluation results show that the proposed methodology can achieve high predictive accuracy for long term crime forecasting, thus can be successfully exploited to predict the time evolution of the number of crimes in urban environments.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.