As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper proposes model rotation as a general approach to parallelize big data machine learning applications. To solve the big model problem in parallelization, we distribute the model parameters to inter-node workers and rotate different model parts in a ring topology. The advantage of model rotation comes from maximizing the effect of parallel model updates for algorithm convergence while minimizing the overhead of communication. We formulate a solution using computation models, programming interfaces, and system implementations as design principles and derive a machine learning framework with three algorithms built on top of it: Latent Dirichlet Allocation using Collapsed Gibbs Sampling, Matrix Factorization using Stochastic Gradient Descent and Cyclic Coordinate Descent. The performance results on an Intel Haswell cluster with max 60 nodes show that our solution achieves faster model convergence speed and higher scalability than previous work by others.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.