As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A main research goal of IT nowadays is to investigate and design new scalable solutions for big data analysis. This goal asks for coupling scalable algorithms with high-performance programming tools and platforms. Addressing these challenges requires a seamless integration of the scalable computing techniques and big data analytics research approaches and frameworks. In fact, scalability is a key item for big data analysis and machine learning applications. Scalable big data analysis today can be achieved by parallel implementations that are able to exploit the computing and storage facilities of HPC systems and clouds, whereas in the next future exascale systems will be used to implement extreme scale data analysis. This chapter introduces and discusses cloud models that support the design and development of scalable data mining applications and report on challenges and issues to be addressed and solved for developing data analysis algorithms on extreme-scale systems.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.