As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Increasingly, in data-intensive areas of the life sciences, experimental results are being described in algorithmically useful ways with the help of ontologies. Such ontologies are authored and maintained by scientists to support the retrieval, integration and analysis of their data. The proposition to be defended here is that ontologies of this type – the Gene Ontology (GO) being the most conspicuous example – are a part of science. Initial evidence for the truth of this proposition (which some will find self-evident) is the increasing recognition of the importance of empirically-based methods of evaluation to the ontology development work being undertaken in support of scientific research. Ontologies created by scientists must, of course, be associated with implementations satisfying the requirements of software engineering. But the ontologies are not themselves engineering artifacts, and to conceive them as such brings grievous consequences. Rather, ontologies such as the GO are in different respects comparable to scientific theories, to scientific databases, and to scientific journal publications. Such a view implies a new conception of what is involved in the authoring, maintenance and application of ontologies in scientific contexts, and therewith also a new approach to the evaluation of ontologies and to the training of ontologists.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.