As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Within the machine learning framework, incremental learning of multivariate spaces is of special interest for on-line applications. In this work, the regression problem for multivariate systems is solved by implementing an efficient probabilistic incremental algorithm. It allows learning high-dimensional redundant non-linear maps by the cumulative acquisition of data from input-output systems. The proposed model is aimed at solving prediction and inference problems. The implementation introduced in this work allows learning from data batches without the need of keeping them in memory afterwards. The learning architecture is built using Incremental Gaussian Mixture Models. The Expectation-Maximization algorithm and general geometric properties of Gaussian distributions are used to train the models. Our current implementation can produce accurate results fitting models in real multivariate systems. Results are shown from testing the algorithm for both situations, one where the incremental learning is demonstrated and the second where the performance to solve the regression problem is evaluated on a toy example.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.