As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In recent years, there has been a growing interest in applying deep learning techniques for automatic generation of software. To achieve this ambitious objective, a number of smaller research goals need to be reached, one of which is automatic categorization of software, used in numerous tasks of software intelligence. We present here an approach to this problem using a set of low-level features derived from lexical analysis of software code. We compare different feature sets for categorizing software and also apply different supervised machine learning algorithms to perform the classification task. The representation allows us to identify the most relevant libraries used for each class, and we use the best-performing classifier to accomplish this. We evaluate our approach by applying it to categorize popular Python projects from Github.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.