As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Additive manufacturing (AM) or 3D printing, is seen amongst some technologists, designers and engineers as the “second industrial revolution”. This is because of the advantages AM can bring to product design and development and with the advancement of AM machine technology, the dream of it one day replacing some conventional manufacturing techniques may slowly become a reality. However there are many challenges to overcome before then, these include machine and material costs, production speed, attitudes towards new, often expensive AM technologies and a lack of reliable material design data. This paper will outline a solution to the lack of available material design data through a material characterization regime that will enable efficient component design, also enhancing how AM is perceived and promoting its adoption as a viable manufacturing technique. The development of the material characterization regime focused on ULTEM 9085, determining which material properties were required, ensuring efficient dimensional measurement and test methods were used, before the manufacture and testing of tensile and compressive samples. Finally a finite element analysis (FEA) truth test was performed to assess the reliability of the data produced.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.