As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Record linkage is a technique for integrating data from sources or providers where direct access to the data is not possible due to security and privacy considerations. This is a very common scenario for medical data, as patient privacy is a significant concern. To avoid privacy leakage, researchers have adopted k-anonymity to protect raw data from re-identification however they cannot avoid associated information loss, e.g. due to generalisation. Given that individual-level data is often not disclosed in the linkage cases, but yet remains potentially re-discoverable, we propose semantic-based linkage k-anonymity to de-identify record linkage with fewer generalisations and eliminate inference disclosure through semantic reasoning.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.