As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Recommender systems (RS) are useful tools for filtering and sorting items and information for users. There is a wide diversity of approaches that help creating personalized recommendations. Context-aware recommender systems (CARS) are a kind of RS which provide adaptation capabilities to the user's environment, e.g., by sensing data through wearable devices or other biomedical sensors. In healthcare and wellbeing, CARS can support health promotion and health education, considering that each individual requires tailored intervention programs. Our research aims at proposing a context-aware mobile recommender system for the promotion of healthy habits. The system is adapted to the user's needs, his/her health information, interests, time, location and lifestyles. In this paper, the CARS computational architecture and the user and context models of health promotion are presented, which were used to implement and test a prototype recommender system.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.