As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Background: Sedentarism is associated with the development of noncommunicable diseases (NCD) such as cardiovascular diseases (CVD), type 2 diabetes, and cancer. Therefore, the identification of specific sedentary behaviors (TV viewing, sitting at work, driving, relaxing, etc.) is especially relevant for planning personalized prevention programs.
Objective: To build and evaluate a public a dataset for the automatic recognition (classification) of sedentary behaviors.
Results: The dataset included data from 30 subjects, who performed 23 sedentary behaviors while wearing a commercial wearable on the wrist, a smartphone on the hip and another in the thigh. Bluetooth Low Energy (BLE) beacons were used in order to improve the automatic classification of different sedentary behaviors. The study also compared six well know data mining classification techniques in order to identify the more precise method of solving the classification problem of the 23 defined behaviors.
Conclusions: A better classification accuracy was obtained using the Random Forest algorithm and when data were collected from the phone on the hip. Furthermore, the use of beacons as a reference for obtaining the symbolic location of the individual improved the precision of the classification.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.