As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Metabolomic data can potentially enable accurate, non-invasive and low-cost prediction of coronary artery disease. Regression-based analytical approaches however might fail to fully account for interactions between metabolites, rely on a priori selected input features and thus might suffer from poorer accuracy. Supervised machine learning methods can potentially be used in order to fully exploit the dimensionality and richness of the data. In this paper, we systematically implement and evaluate a set of supervised learning methods (L1 regression, random forest classifier) and compare them to traditional regression-based approaches for disease prediction using metabolomic data.