As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Treatment effectiveness plays a fundamental role in patient therapies. In most observational studies, researchers often design an analysis pipeline for a specific treatment based on the study cohort. To evaluate other treatments in the data set, much repeated and multifarious work including cohort construction, statistical analysis need to be done. In addition, as treatments are often with an intrinsic hierarchical relationship, many rational comparable treatment pairs can be derived as new treatment variables besides the original single treatment one from the original cohort data set. In this paper, we propose an automatic treatment effectiveness analysis approach to solve this problem. With our approach, clinicians can assess the effect of treatments not only more conveniently but also more thoroughly and comprehensively. We applied this method to a real world case of estimating the drug effectiveness on Chinese Acute Myocardial Infarction (CAMI) data set and some meaningful results are obtained for potential improvement of patient treatments.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.