As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper we review our work on the acquisition of game-playing capabilities by a computer, when the only source of knowledge comes from extended self-play and sparsely dispersed human (expert) play. We summarily present experiments that show how a reinforcement learning backbone coupled with neural networks for approximation can indeed serve as a mechanism of the acquisition of game playing skill and we derive game interestingness measures that are inexpensive and straightforward to compute, yet also capture the relative quality of the game playing engine. We draw direct analogues to classical genetic algorithms and we stress that evolutionary development should be coupled with more traditional, expert-designed paths. That way the learning computer is exposed to tutorial games without having to revert to domain knowledge, thus facilitating the knowledge engineering life-cycle.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.