As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Uncertain data is the data accompanied with probability, which makes the frequent itemset mining have more challenges. Given the data size n, computing the probabilistic support needs O(n(logn)2) time complexity and O(n) space complexity. This paper focuses on the problem of mining probabilistic frequent itemsets over uncertain databases and proposed PFIMSample algorithm. We employ the Chebyshev inequation to estimate the frequency of the items, which decreases certain computing from O(n(logn)2) to O(n). In addition, we propose the sampling technique to improve the performance. Our extensive experimental results show that our algorithm can achieve a significantly improved runtime cost and memory cost with high accuracy.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.