As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Handling dynamic aspect of databases and multiple support threshold requirements of items are two important challenges of frequent itemset mining algorithms. Existing dynamic itemset mining algorithms are devised for single support threshold whereas multiple support threshold algorithms assume that the databases are static. This paper focuses on dynamic update problem of frequent itemsets under MIS (Multiple Item Support) thresholds and introduces Dynamic MIS algorithm. It is i) tree based and scans the database once, ii) considers multiple support thresholds, and iii) handles increments of additions, additions with new items and deletions. Proposed algorithm is compared to CFP-Growth++ and findings are; in dynamic database 1) Dynamic MIS performs better than CFP-Growth++ since it runs only on increments and 2) Dynamic MIS can achieve speed-up up to 56 times against CFP-Growth++.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.