As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Music plays an important role in the human's life. It is not only a set of sounds – music evokes emotions subjectively perceived by listeners. The growing amount of audio data wakes up a need for content-based searching. Traditionally, tunes information has been retrieved based on a reference information, for example, the title of a tune, the name of an artist, the genre and so on. When users would like to try to find music pieces in a specific mood such standard reference information of the tunes is not sufficiently effective. We need new methods and approaches to realize emotion-based search and tune content analysis. This paper proposes a new music-tune analysis approach to realize automatic emotion recognition by means of essential musical features. The innovativeness of this research is that it uses new musical features for tune's analysis, which are based on human's perception of the music. Most important distinction of the proposed approach is that it includes broader range of tunes genres, which is very significant for music emotion recognition system. Emotion description on continuous plane instead of categories results in more supported adjectives for emotion description which is also a great advantage.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.