As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
With the volume of daily news growing to sizes too big to handle for any individual human, there is a clear need for effective search algorithms. Since traditional bag-of-words approaches are inherently limited since they ignore much of the information that is embedded in the structure of the text, we propose a linguistic approach to search called Destiny in this paper. With Destiny, sentences, both from news items and the user queries, are represented as graphs where the nodes represent the words in the sentence and the edges represent the grammatical relations between the words. The proposed algorithm is evaluated against a TF-IDF baseline using a custom corpus of user-rated sentences. Destiny significantly outperforms TF-IDF in terms of Mean Average Precision, normalized Discounted Cumulative Gain, and Spearman's Rho.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.