As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
With the rise of e-commerce, online consumer reviews have become crucial for consumers' purchasing decisions. Most of the existing research focuses on the detection of explicit features and sentiments in such reviews, thereby ignoring all that is reviewed implicitly. This study builds, in extension of an existing implicit feature algorithm that can only assign one implicit feature to each sentence, a classifier that predicts the presence of multiple implicit features in sentences. The classifier makes its prediction based on a custom score function and a trained threshold. Only if this score exceeds the threshold, we allow for the detection of multiple implicit feature. In this way, we increase the recall while limiting the decrease in precision. In the more realistic scenario, the classifier-based approach improves the F1-score from 62.9% to 64.5% on a restaurant review data set. The precision of the computed sentiment associated with the detected features is 63.9%.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.