As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The output of generic automatic speech recognition systems consists of raw word sequences without any punctuation symbols. When sequences are longer, it is difficult for humans to read and understand them. Also, many natural language understanding and processing tools expect that input will contain punctuation. We present a bidirectional recurrent neural network for punctuation restoration in speech utterances. The proposed model showed promising results, F1-scores of 0.732 for commas and 0.708 for periods on raw output from a speech recognizer.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.