As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Paper deals with the recognition of disease codes and with the hybrid recognition technology. It is impossible so far to recognize about 15000 various diseases, but each disease can be identified by its code, consisting of one letter and some digits. The appropriate Lithuanian names were selected for each letter and their recognition accuracy together with Lithuanian digit names recognition accuracy was investigated. By the hybrid approach we assume the combination of two different recognizers to achieve higher recognition accuracy. The first recognizer was HTK-based Lithuanian recognizer, the second one – the Spanish language recognizer adapted to the Lithuanian language. The experimental results show that a hybrid decision-making rule learned by “random forest” classifier decreases the recognition error of Lithuanian digits names speech corpus by 74.1% and the recognition error of Lithuanian names speech corpus by 76.7% compared with HTK-based Lithuanian recognizer when the speaker is unknown.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.