As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The analysis of people's nutrition habits is one of the most important mechanisms for applying a thorough monitorisation of several medical conditions (e.g. diabetes, obesity, etc.) that affect a high percentage of the global population. Methods for automatically logging one's meals could not only make the process easier, but also make it objective to the user's point of view and interpretability. One of the solutions adopted recently that could ease the automatic construction of nutrition diaries is to ask individuals to take photos with their mobile phones. An alternative technique is visual lifelogging that consists of using a wearable camera that automatically captures pictures from the user point of view (egocentric point of view) with the aim to analyse different patterns of his/her daily life and extract highly relevant information like nutritional habits. In this talk we will show how deep learning applied to the food detection and food recognition problems can help to automatically infer the user's eating pattern.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.