As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Current understanding of correlations and quantum phase transitions in many-body systems has significantly improved thanks to the recent intensive studies of their entanglement properties. In contrast, much less is known about the role of quantum non-locality in these systems. On the one hand, standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three ...) particles. On the other hand, most of the available multipartite Bell inequalities involve correlations among many particles. Such correlations are notoriously hard to access theoretically, and even harder experimentally. Typically, there is no Bell inequality for many-body systems built only from low-order correlation functions. Recently, however, it has been shown in Tura J. et al., Science 344, (2014) 1256 that multipartite Bell inequalities constructed only from two-body correlation functions are strong enough to reveal non-locality in some many-body states, in particular those relevant for nuclear and atomic physics. The purpose of this lecture is to provide an overview of the problem of quantum correlations in many-body systems—from entanglement to non-locality—and the methods for their characterization.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.