As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Anomaly detection is an important problem with many applications in industry. This paper introduces a new methodology for detecting anomalies in a real laser heating surface process recorded with a high-speed thermal camera (1000 fps, 32×32 pixels). The system is trained with non-anomalous data only (32 videos with 21500 frames). The proposed method is built upon kernel density estimation and is capable of detecting anomalies in time-series data. The classification should be completed in-process, that is, within the cycle time of the workpiece.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.