As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Deep networks such as autoencoders and deep belief nets are able to construct alternative, and often informative, representations of unlabeled data by searching for (hidden) structure and correlations between the features chosen to represent the data and combining them into new features that allow sparse representations of the data. These representations have been chosen to often increase the accuracy of further classification or regression accuracy when compared to the original, often human chosen representations. In this work, we attempt an investigation of the relation between such discovered representations found using related but differently represented sets of examples. To this end, we combine the cross-domain comparison capabilities of unsupervised manifold alignment with the unsupervised feature construction of deep belief nets, resulting in an example mapping function that allows re-encoding examples from any source to any target task. Using the t-Distributed Stochastic Neighbour Embedding technique to map translated and real examples to a lower dimensional space, we employ KL-divergence to define a dissimilarity measure between data sets enabling us to measure found representation similarities between domains.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.