As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Link prediction is a key problem in social network analysis: it involves making suggestions about where to add new links in a network, based solely on the structure of the network. We address a special case of this problem, whereby the new links are supposed to connect different communities in the network; we call it the interlinks prediction problem. This is particularly challenging as there are typically very few links between different communities. To solve this problem, we propose a local node-similarity measure, inspired by the Owen-value interaction index—a concept developed in cooperative game theory and fuzzy systems. Although this index requires an exponential number of operations in the general case, we show that our local node-similarity measure is computable in polynomial time. We apply our measure to solve the inter-links prediction problem in a number of real-life networks, and show that it outperforms all other local similarity measures in the literature.