As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared to the projection based hashing methods, prototype based ones own stronger capability of generating discriminative binary codes for the data with complex inherent structure. However, our observation indicates that they still suffer from the insufficient coding that usually utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization method that learns a discriminative hash function with prototypes correspondingly associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes. We believe that our idea serves as a very helpful insight to hashing research. The extensive experiments on four large-scale (up to 80 million) datasets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.