As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A new algorithm named EXPected Similarity Estimation (EXPOSE) was recently proposed to solve the problem of large-scale anomaly detection. It is a non-parametric and distribution free kernel method based on the Hilbert space embedding of probability measures. Given a dataset of n samples, EXPOSE takes [Oscr ](n) time to build a model and [Oscr ](1) time per prediction.
In this work we describe and analyze a simple and effective stochastic optimization algorithm which allows us to drastically reduce the learning time of EXPOSE from previous linear to constant. It is crucial that this approach allows us to determine the number of iterations based on a desired accuracy, independent of the dataset size n. We will show that the proposed stochastic gradient descent algorithm works in general possible infinite-dimensional Hilbert spaces, is easy to implement and requires no additional step-size parameters.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.