As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this study, it is aimed to generate improved models for detecting undiagnosed type II diabetes mellitus patients by employing data from both undiagnosed and diagnosed patients. The main motivation is that, with the widespread use of electronic health records, increasing amount of data is accumulating for diagnosed patients. In our simulations, the training sets are allowed to include data from both undiagnosed and diagnosed patients. The models generated are then evaluated using the undiagnosed patients. Experimental results have shown that the data from diagnosed patients do not help to improve the detection performance of undiagnosed patients.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.