As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
From a conceptual point of view, belief revision and learning are quite similar. Both methods change the belief state of an intelligent agent by processing incoming information. However, for learning, the focus in on the exploitation of data to extract and assimilate useful knowledge, whereas belief revision is more concerned with the adaption of prior beliefs to new information for the purpose of reasoning. In this paper, we propose a hybrid learning method called SPHINX that combines low-level, non-cognitive reinforcement learning with high-level epistemic belief revision, similar to human learning. The former represents knowledge in a sub-symbolic, numerical way, while the latter is based on symbolic, non-monotonic logics and allows reasoning. Beyond the theoretical appeal of linking methods of very different disciplines of artificial intelligence, we will illustrate the usefulness of our approach by employing SPHINX in the area of computer vision for object recognition tasks. The SPHINX agent interacts with its environment by rotating objects depending on past experiences and newly acquired generic knowledge to choose those views which are most advantageous for recognition.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.