As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper addresses the use of an evolutionary algorithm for the optimization of a K-nearest neighbor classifier to be used in the implementation of an intrusion detection system. The inclusion of a diversity maintenance technique embodied in the design of the evolutionary algorithm enables us to obtain different subsets of features extracted from network traffic data that lead to high classification accuracies. The methodology has been preliminarily applied to the Denial of Service attack detection, a key issue in maintaining continuity of the services provided by business organizations.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.