As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Research in blood transfusions mainly focuses on Donor Blood Management, including donation, screening, storage and transport. However, the last years saw an increasing interest in recipient related optimizations, i.e. Patient Blood Management (PBM). Although PBM already aims at reducing transfusion rates by pre- and intra-surgical optimization, there is still a high potential of improvement on an individual level. The present paper investigates the feasibility of predicting blood transfusions needs based on datasets from various treatment phases, using data which have been collected in two previous studies. Results indicate that prediction of blood transfusions can be further improved by predictive modelling including individual pre-surgical parameters. This also allows to identify the main predictors influencing transfusion practice. If confirmed in a prospective dataset, these or similar predictive methods could be a valuable tool to support PBM with the ultimate goal to reduce costs and improve patient outcomes.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.