As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Data mining is a broad area that integrates research efforts from several fields with the aim of processing large volumes of data into knowledge bases for better decision making. Since numerical and nominal data are equally important in practical data mining applications, dealing with different types of data items are among the most important problems in data mining research and development. This paper introduces a new fuzzy rule induction algorithm, able to deal properly with either numerical or nominal attributes, for the creation of classification and predictive models. To better handle numerical data, fuzzy sets are used to represent intervals in the domains of numerical attributes. Experimental results have shown that the proposed algorithm produces robust and general models that can be used for prediction as well as for classification.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.