As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This work presents a novel approach for applying compositional model checking of behavioral UML models, based on learning. The Unified Modeling Language (UML) is a widely accepted modeling language for embedded and safety critical systems. As such the correct behavior of systems represented as UML models is crucial. Model checking is a successful automated verification technique for checking whether a system satisfies a desired property. However, its applicability is often impeded by its high time and memory requirements. A successful approach to tackle this limitation is compositional model checking. Recently, great advancements have been made in this direction via automatic learning-based Assume-Guarantee reasoning.
In this work we propose a framework for automatic Assume-Guarantee reasoning for behavioral UML systems. We apply an off-the-shelf learning algorithm for incrementally generating environment assumptions that guarantee satisfaction of the property. A unique feature of our approach is that the generated assumptions are UML state machines. Moreover, our Teacher works at the UML level: all queries from the learning algorithm are answered by generating and verifying behavioral UML systems.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.